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Abstract

This thesis investigates the challenges of implementing Federated Learning (FL) in

diverse wireless edge networks, focusing on mitigating the impact of device hetero-

geneity, communication impairments, and trustworthiness concerns. Our research

addresses the limitations of traditional FL approaches, which often suffer from slow

convergence and reduced accuracy due to varying data quality, transmission rates,

and error-prone channels. we propose novel risk-aware and accelerated FL frame-

works that leverage device trustworthiness metrics and dynamic aggregation schemes.

By classifying clients based on location-dependent performance and trustworthiness

profiles, the frameworks prioritize participation from devices with high transmission

rates while progressively incorporating data from cell-edge clients to enhance data

diversity. In Addition, the frameworks employ debiasing techniques to account for

transmission errors. To address the issue of unreliable clients, we explore two distinct

validation approaches. The first approach utilizes a dedicated validation dataset to

identify and eliminate untrustworthy clients, ensuring data integrity and model ac-

curacy. Given the potential lack of such a dataset, the second approach investigates

alternative mechanisms without relying on a separate validation dataset. The ef-

fectiveness of these frameworks and validation mechanisms is demonstrated through

extensive simulations in a range of wireless settings, including conventional terrestrial
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cellular networks and emerging 6G non-terrestrial networks with unmanned aerial ve-

hicles. Results showcase the superior performance of the proposed frameworks com-

pared to conventional FL approaches across these diverse environments, highlighting

their adaptability and robustness.
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Chapter 1

Introduction

1.1 Federated Learning as a Serice

The arrival of 6G networks signifies a transformative shift towards interconnected in-

telligent ecosystems, revolutionizing wireless communication. Within this landscape,

Federated Learning as a Service (FLaaS) [1,2] emerges as a critical technology at the

network edge. FLaaS prioritizes data privacy and minimizes communication over-

head by departing from traditional centralized machine learning approaches. Instead

of pooling raw data, FLaaS leverages a central aggregator, typically an edge server ,

to combine locally trained models from edge devices. This iterative process of global

model aggregation and local model updates continues until convergence, ensuring

efficient utilization of edge device capabilities while maintaining optimal FLaaS per-

formance.

In the age of information (AoI) [3], characterized by explosive data generation

from Internet of Things IoT devices [4, 5], edge computing facilitates efficient data

processing and decision-making [6]. By bringing computing resources closer to data

sources, edge computing reduces latency and alleviates the burden on central servers,
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enabling timely data analysis. FLaaS capitalizes on edge computing infrastructure by

empowering edge devices to perform local model training and aggregation, minimiz-

ing communication latency and upholding data privacy. This decentralized approach

enhances the scalability and efficiency of FLaaS systems while empowering edge de-

vices to contribute actively to the collaborative learning process. The benefits of

FLaaS extend beyond data privacy and communication efficiency. FLaaS reduces the

computational load on resource-constrained edge devices by sharing model updates

instead of raw data.. The diverse data from various devices contributes to more ro-

bust and generalizable models than to centralized training. Moreover, FLaaS offers

scalability and flexibility, adapting to a growing number of devices and heterogeneous

data distributions. Despite its advantages, FLaaS faces spesific challenges. Frequent

model updates, while reducing overall communication, can still strain network re-

sources. Varying data distributions across devices can lead to convergence issues

and impact model performance. Additionally, potential vulnerabilities and attacks

targeting FLaaS privacy mechanisms require careful consideration and mitigation.

1.2 Challenges

FLaaS offers a promising approach to collaborative machine learning while preserving

data privacy. However, several challenges must be addressed to ensure its effectiveness

and reliability [7]. One key challenge is achieving efficient convergence [8] during the

learning process. The decentralized nature of FLaaS can lead to slower convergence

compared to centralized methods, as model training is distributed across devices

with varying computational resources and participation levels. Additionally, data

scarcity and non-IID data distributions [9, 10] pose significant hurdles. Traditional



1.3. CONTRIBUTIONS 6

FLaaS algorithms often assume data homogeneity, which can lead to suboptimal

performance when faced with diverse user datasets. Researchers are actively exploring

solutions such as FedAvg with client-side momentum, asynchronous update rules,

adaptive optimization algorithms, federated data augmentation, transfer learning,

and personalized FLaaS to address these convergence and data challenges.

Another critical aspect is establishing trust and security within FLaaS systems

[11–13]. Protecting against malicious users and ensuring the integrity of the learning

process is crucial. Robust user authentication protocols, secure communication chan-

nels, and anomaly detection mechanisms are essential to prevent unauthorized access,

data breaches, and manipulation of model updates. Techniques like homomorphic en-

cryption [14] and differential privacy [15] can enable secure model aggregation while

preserving data confidentiality. Additionally, ongoing research focuses on developing

robust methods for detecting and mitigating stealthy attacks, where malicious users

attempt to subtly influence the model without detection. FLaaS can reach its full

potential as a secure and efficient collaborative learning paradigm by addressing these

convergence, data, and trust challenges.

1.3 Contributions

This thesis delves into the challenges FLaaS presents in wireless communication, en-

compassing terrestrial and non-terrestrial networks. The primary focus is addressing

the complexities of non-trusted environments characterized by data scarcity and po-

tentially malicious users.

Firstly, the research investigates the efficacy of accelerated FLaaS techniques in

enhancing model convergence and communication efficiency. By exploring methods
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such as prioritizing high-data users and implementing efficient model aggregation,

the study aims to demonstrate the potential for accelerated FLaaS to expedite the

learning process and reduce communication overhead in diverse network settings.

Secondly, the thesis tackles the challenge of non-trusted users in FLaaS scenar-

ios. Novel approaches for ensuring model integrity and privacy preservation are in-

vestigated, including the development and evaluation of trustworthiness metrics to

mitigate the impact of malicious and risky users on FLaaS performance.

Furthermore, the research explores the role of validation datasets in addressing

data scarcity and ensuring model quality across terrestrial and non-terrestrial net-

works. By analyzing the effectiveness of validation datasets in validating user contri-

butions and detecting malicious behavior, the study provides valuable insights into

their importance for enhancing FLaaS performance in real-world wireless communi-

cation applications.

Finally, this thesis proposes an alternative approach to address the challenge of

non-trusted users in scenarios where validation datasets are absent. This approach

aims to enhance the robustness and resilience of FLaaS systems in non-trusted en-

vironments, paving the way for more secure and reliable FLaaS implementations in

wireless communication.

1.4 Organization of Thesis

This thesis is structured into three main chapters, each building upon the previous

to provide a comprehensive exploration of FLaaS and its application in wireless com-

munication, particularly within non-trusted environments. Chapter 2 establishes a
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foundational understanding of FLaaS principles, covering essential concepts in ma-

chine learning, the implementation of FLaaS over wireless networks, and key security

considerations for FLaaS systems. Building upon this foundation, Chapter 3 delves

into utilizing validation datasets to address challenges posed by non-trusted users in

FLaaS environments. This chapter explores the effectiveness of validation datasets

in ensuring model quality, validating user contributions, and detecting malicious be-

havior. Chapter 4 extends the investigation to scenarios where validation datasets

may be unavailable, proposing and evaluating alternative approaches for handling

non-trusted users and enhancing the robustness of FLaaS systems in such challeng-

ing environments. Each chapter addresses specific research questions related to the

challenges of FLaaS in wireless communication, ultimately contributing to develop-

ing more secure and reliable FLaaS implementations for diverse network settings.

Finally, Chapter 5 concludes and summarizes the thesis, giving insights and future

work recommendations.
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Chapter 2

Background

2.1 Federated Learning Preliminaries

2.1.1 Machine Learning (ML)

Before delving into Federated Learning (FL), it is crucial to establish a solid under-

standing of the fundamental principles and techniques in ML [16] and deep learning

(DL) [17]. Machine learning forms the basis of FL systems, providing the framework

for training models on distributed data sources. In ML, supervised learning [18] in-

volves learning from labeled data, where algorithms are trained to map input features

to corresponding output labels. On the other hand, unsupervised learning [19] deals

with uncovering hidden patterns and structures in unlabeled data. Reinforcement

learning [20] focuses on learning optimal decision-making strategies through interac-

tion with an environment. Deep learning techniques, particularly neural networks,

are integral to FL because they can learn complex patterns and representations from

data. Convolutional neural networks (CNNs) [21] are specialized neural networks for

processing grid-like data, such as images, leveraging convolutional layers to extract

spatial hierarchies of features. Recurrent neural networks (RNNs) [22] are designed
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to handle sequential data by incorporating feedback loops, allowing them to capture

temporal dependencies in sequences. Additionally, understanding optimization al-

gorithms like stochastic gradient descent (SGD) [23] and its variants, regularization

techniques such as L1 and L2 regularization, and model evaluation metrics like ac-

curacy, precision, recall, and F1 score is essential for effectively training, optimizing,

and evaluating FL models. By mastering these foundational concepts in ML and

DL, researchers and practitioners can navigate the landscape of FL with confidence,

harnessing its potential for distributed and collaborative model training.

2.1.2 Federated Learning

FL is a decentralized machine learning approach that trains a global model using

datasets distributed across various geographical locations. Instead of centralizing

data, FL harnesses the computational power and data availability of numerous devices

referred to as clients. Each client trains a local model on its own dataset and transmits

the model parameters to a Base Station (BS) or Aggregator Server (AS). The AS

plays a crucial role in this framework by aggregating these local models using a

specific aggregation algorithm to form an updated global model. This process is

iterative, aiming to optimize the following objectives:

min
w

F (w) =
U∑

n=1

pnFn(w), (2.1)

Here, pn = Dn∑U
n=1 Dn

represents the proportion of the total dataset contributed by

user n, where Dn is the size of the dataset held by user n. The term Fn(w) denotes

the average loss function for user n, reflecting the performance of the model w on user

n’s data. This loss function aggregates the errors made across all samples in user n’s
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dataset, guiding the optimization to improve the model’s accuracy and utility across

diverse data distributions and is represented by:

Fn(w) =
1

Dn

∑
s∈Dn

fn(w, s), (2.2)

where fn(w, s) is the loss function at weight w on sample s. The iterative process

of updating and aggregating local models continues until the global model achieves

satisfactory accuracy or meets other predefined criteria. This method leverages the

unique strengths of distributed data while adhering to privacy constraints, as raw

data never leaves its original location.

The distribution of datasets across clients can significantly influence the perfor-

mance and complexity of the learning process. There are two primary types of dataset

distributions:

• Independent and Identically Distributed (IID): In this type of distribu-

tion, each client’s local dataset is assumed to represent the overall dataset fairly.

This means that the statistical properties of the data, as well as the proportion

of each class, are consistent across all clients. Each dataset is like a random

sample from the same population, ensuring no single dataset is biased toward

specific characteristics.

• Non-Independent and Identically Distributed (Non-IID) [24] [25]: This

distribution is more complex and realistic, where the data across different clients

vary significantly. The variations can include differences in the class distribution

(some classes might be overrepresented or underrepresented in certain datasets),
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and some classes might even be exclusive to specific datasets. This heterogene-

ity can introduce challenges in learning a global model that performs well across

all clients because the model must generalize well across diverse, unevenly dis-

tributed data sources.

Understanding these distinctions is crucial for designing effective FL algorithms,

as the data distribution type can impact both the convergence behavior of the learning

algorithm and the final model’s performance.

One of the foundational aggregation algorithms in FL is Federated Averaging

(FedAvg) [26]. This algorithm has garnered significant attention due to its simplic-

ity, effectiveness, and ease of implementation. As shown in Fig. 2.1, FedAvg aims

to aggregate the received model weights from participating clients using a weighted

average, where each client’s contribution is proportional to its dataset size. Mathe-

matically, as expressed in the following equation:

gt =
U∑

n=1

pnwn,t, (2.3)

at each iteration, the aggregated global model gt is computed as the sum of weighted

model updates from individual clients, represented as
∑U

n=1 pnwn,t.
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Figure 2.1: FedAvg Architecture

2.1.3 FedAvg

The process of FL unfolds through a series of key steps:

1. Global Weight Initialization: This crucial initial phase sets the foundation

for FL. The system broadcasts the initial global model g0 to all participat-

ing devices. This global model is tailored to the specific task and is designed

considering factors such as the dataset and learning objectives.

2. Local Edge Training: Following global weight initialization, each device em-

barks on its training using the received global model g0. Through local edge
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training, devices refine their model weights wn,t using iterative optimization

techniques such as Stochastic Gradient Descent (SGD) as in [27]. The update

equation,

w
(i+1)
n,t ← w

(i)
n,t − γgn(w

(i)
n,t), (2.4)

guides this process over a predetermined number of epochs i ranging from 0 to

E − 1. Here, γ denotes the learning rate essential for fine-tuning the model

parameters.

3. Local Model Uploading: With local training complete, all devices transmit

their refined local weights back to the AS. This step prepares the gathered

model updates for the subsequent aggregation process.

4. Aggregation and rebroadcasting the weights: The pivotal role of the AS

comes to the forefront in this phase. Leveraging the received model updates

from participating devices, the AS aggregates them to generate the new global

model gt+1. Once aggregated, the AS redistributes the updated global model to

all users, ensuring that the latest models are disseminated across the federated

network.

FedAvg’s key advantages are its simplicity, efficiency, and scalability, making it

a popular choice for FL tasks. FedAvg operates under the assumption of IID data,

where each client’s local dataset mirrors the overall dataset’s statistical distribution.

In such scenarios, FedAvg excels, leveraging the homogeneous data to efficiently ag-

gregate model updates and achieve impressive performance across various domains,

including image classification, natural language processing, and healthcare. How-

ever, in non-IID settings where data distributions vary significantly among clients,
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FedAvg’s performance may degrade due to mismatched data characteristics. Despite

this limitation, FedAvg continues to be a popular choice for FL tasks, driving ongoing

research efforts to develop more sophisticated aggregation algorithms that can adapt

to diverse data distributions and enhance performance in real-world scenarios.

2.2 Federated Learning Over over Wireless Communication

2.2.1 Wireless Impairments and Stochastic Geometry

Wireless communication revolutionizes connectivity by offering enhanced mobility,

broader coverage, and higher data rates than wired alternatives. This technology

enables seamless communication across diverse environments, empowering users with

unprecedented flexibility and convenience. However, the advantages of wireless com-

munication are accompanied by inherent challenges. These challenges stem from the

dynamic and unpredictable nature of the wireless medium, which exposes commu-

nication links to various impairments. Three primary factors contributing to these

impairments are fading, interference, and path loss.

Fading

Fading refers to the fluctuations in signal strength experienced by wireless signals as

they propagate through the environment. These fluctuations can be attributed to

various factors, including multipath propagation and obstacles encountered along the

signal path. Multipath propagation occurs when wireless signals travel multiple paths

from the transmitter to the receiver, resulting in signal reflections, diffraction, and

scattering. As a result, different copies of the transmitted signal arrive at the receiver

with different delays and phases, leading to constructive or destructive interference.
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Figure 2.2: Fadings Type

Additionally, obstacles in the signal path, such as buildings, trees, and terrain fea-

tures, can attenuate or block wireless signals. Two primary scenarios shown in Fig.

2.2 describe how fading occurs in wireless networks:

1. Line of Sight (LOS) Network

• In a LOS network, communication paths are direct and unobstructed be-

tween transmitters and receivers. This direct link ensures minimal signal

attenuation and interference, providing clear and reliable communication.

• LOS scenarios are particularly advantageous for wireless systems operating

in open spaces or with elevated antennas, where obstacles like buildings or

terrain are less likely to obstruct the signal path.

• The fading model commonly used in LOS scenarios is Rician Fading, which
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combines a strong line-of-sight signal component with scattered signals.

This model suits environments with clear line-of-sight paths and significant

reflected signals, such as urban areas with buildings causing multipath

propagation.

2. Non-Line of Sight (NLOS) Network

• In an NLOS network, communication paths involve reflections from sur-

rounding objects or surfaces, leading to signal scattering and multipath

propagation. These reflected links can result in signal attenuation, delay

spread, and increased interference.

• NLOS scenarios are common in environments with obstructed line-of-sight

paths, such as dense urban areas, indoor spaces, or regions with foliage

and terrain variations.

• The fading model typically used to model NLOS scenarios is Rayleigh Fad-

ing, which represents the random amplitude fluctuations of signals due to

multipath propagation. A lack of dominant line-of-sight signals character-

izes rayleigh fading and is suitable for modeling complex fading patterns

in NLOS environments.

3. Nakagami-m Fading

• Nakagami-m fading is a mathematical model proposed in [28] to capture

both the effects of LOS and NLOS environments. It incorporates charac-

teristics from both Rician and Rayleigh fading models, making it versatile

for scenarios where there are varying degrees of direct line-of-sight and

multipath interference.
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• This model is particularly useful in wireless communication systems where

the signal experiences a combination of clear line-of-sight paths and scat-

tered reflections, such as in urban environments with buildings and foliage.

• Nakagami fading parameters can be adjusted to represent different fad-

ing conditions, providing flexibility in simulating realistic wireless channel

behaviors.

Figure 2.3: Interference Links Resulting from Surrounding Users

Interference

Interference arises from the simultaneous transmission of signals by multiple users

or devices over the same resource (time, frequency, resource block, phase), as shown

in Fig.2.3, leading to signal degradation and reduced reliability. In wireless commu-

nication systems, managing interference is critical for maintaining desired quality of
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service and system performance.

Stochastic Geometry in Interference Analysis Stochastic geometry is funda-

mental in analyzing and mitigating interference in wireless networks. Here is how

stochastic geometry contributes to interference analysis:

• Modeling Spatial Distributions: Stochastic geometry models the spatial

distribution of wireless nodes, such as BSs, users, and interference sources, in a

probabilistic manner. This modeling approach accounts for the randomness in

node placements, which is crucial for realistic interference modeling [29].

• Analyzing Interference Patterns: Using stochastic geometric models, re-

searchers can analyze interference patterns and quantify interference levels across

different spatial regions within the network. This analysis includes node densi-

ties, transmit power levels, antenna patterns, and propagation environments.

• Coverage and Capacity Assessment: Stochastic geometry enables the as-

sessment of coverage probabilities and capacity limits considering interference

effects. It helps determin the coverage probability for a given Signal-to-Interference-

Plus-Noise-Ratio (SINR) threshold and evaluate achievable data rates under

interference-limited conditions.

• Optimization and Design: Utilizing stochastic geometry-based interference

models, network planners can optimize resource allocation, design efficient inter-

ference mitigation techniques, and enhance overall network performance. These

models assist in making informed decisions regarding deployment strategies,

power control schemes, and interference management policies.
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Stochastic geometry provides a rigorous mathematical framework for understanding,

analyzing, and managing interference in wireless communication systems. Its applica-

tion in interference analysis is instrumental in optimizing network design, improving

spectral efficiency, and ensuring reliable communication in complex wireless environ-

ments.

Path Loss

Path loss refers to the attenuation or weakening of a wireless signal as it propagates

through the environment from the transmitter to the receiver. As the signal travels

over a distance, it gradually loses power due to free-space spreading, absorption, and

scattering. Additionally, penetrating obstacles like buildings, trees, and terrain fur-

ther attenuate the signal, resulting in reduced signal strength at the receiver compared

to the transmitted power. Understanding path loss is crucial in wireless communi-

cation systems as it directly impacts signal coverage, range, and quality, influencing

the design and deployment of wireless networks. Combining these factors, the SINR

equation becomes crucial for assessing wireless communication quality. The SINR

denotes the proportion of the signal power of interest relative to the added power of

noise and interference at the receiver.

SINR =
Ph2

0r
−η

N0 + I
(2.5)

In the equation (2.5), P denotes the original transmitted power, h2
0 represents

the fading power, r−η corresponds to the path exponent capturing the signal atten-

uation over distance r with η as the path loss exponent, N0 denotes the inherent

noise power in the receiver, and I denotes the interference power from other sources.



2.2. FEDERATED LEARNING OVER OVER WIRELESS
COMMUNICATION 21

A higher SINR indicates better signal quality and improved communication perfor-

mance, highlighting the importance of optimizing transmit power, antenna design,

and interference management strategies to maximize SINR and enhance overall sys-

tem reliability and efficiency.

Figure 2.4: Interference Links resulted from Surrounding users

2.2.2 Accelerated FL

The concept of accelerated FL was initially introduced in the literature [8]. As shown

in Fig. 2.4, the approach aims to expedite the initial training rounds by leveraging

a higher SINR, which translates to higher data rates. The strategy involves starting

with a higher SINR threshold in the early training rounds to accelerate the conver-

gence process. As the training progresses, the system gradually relaxes the SINR

threshold, allowing for the inclusion of more users in the FL process. This adaptive

approach optimizes the trade-off between data rate and system capacity, enabling
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faster convergence without a noticeable degradation in performance. The effective-

ness of this approach was demonstrated in the referenced paper, showcasing signifi-

cant enhancements in convergence speed while maintaining satisfactory performance

levels.

2.2.3 Unbiased FL

The presence of wireless impairments, as discussed in Section 2.2.1, introduces vari-

ability in the signals received by the AS from different users. This variability can

lead to situations where the AS may not reliably decode signals from users with a

lower Signal-to-Interference-and-Noise Ratio (SINR). Consequently, users with lower

SINR may fail to participate in certain FL training rounds. The repeated exclusion of

low SINR users from multiple training rounds can introduce bias into the FL model,

favoring users with higher SINR who consistently participate. To address this biasing

effect, techniques for unbiased FL are being explored in [8,30,31]. The authors achieve

this by weighting the contribution of user x by the reciprocal of the probability of

successful participation of that user as follows:

gt ← gt−1 +
U∑

n=1

pn
Sn,t

(wn,t − gt−1), (2.6)

where the term (wn,t − gt−1) represents the actual contribution from the devices.

Thus this contribution is weighted by the factor Sn,t is given by

Sn,t(ζt, rn) = P(SINR(t)
n > ζt)

= P
(

Ph2
0r

−η

N0 + Iagg
> ζt

) (2.7)
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These techniques aim to ensure fair and equitable participation of all users in the

FL process regardless of their SINR levels. They are crucial in maintaining model

fairness and representativeness in heterogeneous wireless environments.

2.3 Security in FL

2.3.1 Byzantine Attacks

FL faces various security challenges, including attacks that aim to compromise the

learning process’s integrity, confidentiality, or availability. These attacks can disrupt

the collaborative nature of FL, leading to inaccurate models, data leakage, or system

downtime. Examples of attacks in FL include the following:

• Model Poison Attack: In a model poison attack, adversaries aim to compro-

mise the integrity of the global model by injecting malicious modifications dur-

ing the training process. This can involve substituting portions of the original

model with a compromised version, introducing backdoors, or alter the model’s

parameters to induce specific misclassifications. Adversaries may create fake

users [32] or exploit existing genuine users [33] to distribute the poisoned mod-

els across the FL network. The consequences of a successful model poison attack

can range from subtle biases in model predictions to outright malfunctioning,

posing significant risks to the integrity and reliability of FL systems.

• Data Poison Attack: Data poison attacks involve manipulating training data

to undermine the learning process and compromise the integrity of the resulting

model. Attackers may modify the dataset by adding, deleting, or altering data

samples, injecting adversarial examples [34], or introducing biases to skew the
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model’s learning dynamics. These manipulations can lead to the propagation of

erroneous patterns and biases throughout the FL network, ultimately resulting

in compromised model performance and reliability.

2.3.2 Attacks Mitigation

Mitigating attacks in FL is crucial to safeguard the integrity and reliability of the en-

tire learning process. While the FedAvg algorithm, which employs a simple mean ag-

gregation rule to combine local model updates, is effective under non-adversarial set-

tings, it can be vulnerable to manipulation in adversarial environments. Adversaries

can exploit compromised worker devices to manipulate the mean of the local models

arbitrarily, leading to potentially compromised global model parameters [1, 35,36].

To develop a resilient approach for dealing with attacks in FL, two main ap-

proaches are commonly followed:

1. Validation Dataset-Driven

In validation dataset-driven approaches, researchers focus on designing aggre-

gation algorithms that mitigate the influence of malicious users while making

use of an assumption about the existence of a small validation dataset. This

dataset should ideally cover the statistical distribution of local datasets across

all users, enabling the identification and exclusion of malicious updates [37,38].

2. Local Statistical Model-Driven: Conversely, local statistical model-driven

approaches do not rely on assumptions about the availability of a small vali-

dation dataset. Instead, they develop aggregation functions that operate solely

based on the statistical properties of the local models received from the clients.
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Several advanced aggregation algorithms have been proposed to address this

challenge, including:

(a) Krum: Krum (Krumming) is an aggregation algorithm designed to mit-

igate the impact of Byzantine attacks in FL. It selects the local updates

closest to the median of all updates regarding euclidean distance, effectively

filtering out potential outliers introduced by malicious participants [35].

(b) Bulyan: Bulyan is another aggregation algorithm developed to enhance

robustness against Byzantine attacks. It works by selecting a subset of local

updates that are the most similar to each other in terms of cosine similarity,

effectively reducing the influence of malicious updates while maintaining

computational efficiency [39].

(c) Trimmed-Mean: The trimmed-mean aggregation algorithm involves dis-

carding a certain percentage of the highest and lowest local updates before

computing the mean of the remaining updates. This approach helps mit-

igate the impact of outliers introduced by malicious participants while

preserving the contributions of genuine updates [40].

2.3.3 Trustworthy Environment

In the context of FL, establishing a trustworthy environment is paramount to en-

sure the integrity and effectiveness of collaborative model training. Researchers have

dedicated efforts to develop mechanisms for evaluating the trustworthiness of par-

ticipating clients, providing valuable insights and recommendations regarding user

behavior within FL systems.

To initiate this process, authors in [41, 42] have proposed a sophisticated trust
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mechanism tailored specifically to address the challenges posed by ”cold start” users—those

lacking historical interaction or contribution within the FL ecosystem. This trust

mechanism aims to derive TM scores, often called reputations or trustworthiness,

for such users, enabling the system to make informed decisions about their reliabil-

ity and contribution potential. By effectively addressing the unique characteristics

and uncertainties associated with cold start users, this approach enhances the overall

robustness and fairness of the FL environment.

Building upon these foundations, researchers in [43] have extended the concept

of trustworthiness assessment to serve as a pivotal tool for detecting and mitigating

malicious behavior within FL systems. Leveraging the TM scores derived from the

mechanism mentioned above, they propose a comprehensive approach for identifying

potentially malicious users. By establishing a predefined threshold for trustworthiness

metric, users falling below this threshold are deemed suspicious or malicious entities

and subsequently excluded from collaborative model training.
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Chapter 3

Risk-Aware Accelerated Wireless Federated

Learning with Heterogeneous Users

3.1 Contribution

This chapter presents a risk-aware FL aggregation model that accounts for wireless

communication factors (e.g., interference and fading) and the trustworthiness of each

device. The main contributions of this chapter are as follows:

• Development of a Comprehensive Risk-Aware Framework: This framework inte-

grates considerations of wireless channel conditions and device security profiles

into the Federated Learning as a Service (FLaaS) paradigm. This holistic ap-

proach ensures the model training is robust against communication errors and

malicious contributions from untrustworthy users.

• Investigation of Non-Trustworthy User Impact: The chapter delves into the

detrimental effects of non-trustworthy users on accelerated wireless FL, par-

ticularly in scenarios with scarce data sources. This analysis highlights the

potential risks associated with incorporating data from unreliable users and
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motivates the need for effective mitigation strategies.

• Utilization of Validation Datasets for Mitigation: This work proposes the uti-

lization of validation datasets as a mechanism to mitigate the contributions

from non-trustworthy users during the model fine-tuning stage.

3.2 System Model

Our model considers a single-tier cellular network where the Aggregator Server (AS)

can be either traditional terrestrial Base Station (BS) or Unmanned Aerial Vehicle

(UAV) acting as aerial ASs. The ASs locations are modeled according to a Poisson

Point Process (PPP) to capture the randomness of their deployment. Users are

assumed to be uniformly distributed within the network area. Each user associates

with the AS that offers the strongest received signal typically the geographically

closest AS. This association is illustrated in Fig.3.1 for a terrestrial BS scenario and

Fig.3.2 for a UAV-based scenario. Without loss of generality, we consider a typical

AS (either terrestrial BS or UAV) located at an arbitrary origin.

3.2.1 FLaaS Model

The FLaaS is provided by terrestrial BSs or UAVs acting as AS for proximate edge

devices. Let U be the number of devices that possess related data for the FLaaS

transaction per AS, then each AS is tasked with the execution of a distributed opti-

mization problem, formally expressed as:

min
gt

f(gt) =
U∑

n=1

anFn(gt), (3.1)
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where an is a weighting factor for the local model aggregation that accounts for the

per-device parameters such as the amount of possessed data and the Trustworthiness

Metric (TM) score. An FLaaS transaction involves several global iterations t ∈ {0, T},

where the loss function fn(·) is assessed at the global model parameter gt for each

device n. Hence, the optimization in (3.1) seeks the most suitable vector gt that

minimizes the average loss across all devices, thereby facilitating a comprehensive

and effective learning model that is reflective of the aggregate insights derived from

the distributed network. The selection of T can be determined either by a predefined

value or dynamically. In the dynamic approach, the learning process continues until

the difference between consecutive global model weights magnitude, |gt| and |gt+1|,

falls below a specified threshold δ. This criterion ensures that the training stops

when the model’s improvement becomes sufficiently small, indicating a successful

convergence.

For each global iteration of the global model in (3.1), every device updates its

local model parameters e ∈ {0, E − 1} times through the execution of the following

update rule:

w
(e+1)
n,t = w

(e)
n,t − γn∇Fx(w

(e)
n,t), (3.2)

where w
(e)
n,t represents the local model of device n after e epochs during the tth global

round, γ represents the learning rate, and ∇Fn(·) is the gradient of the objective

function to the local model parameters. Each device transmits its final parameter

vector wn,t to the AS.It is worth noting that in the context of Non-IID datasets,

increasing the value of E (the number of local epochs) can negatively affect the

learning process. When E is large, users may overfit their local models to their specific

datasets. This overfitting leads to a divergence from the global model, as each user’s
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model becomes more specialized to their local data and less representative of the

overall data distribution. Consequently, the aggregation of these highly specialized

local models can degrade the performance and generalization ability of the global

model.

Therefore, careful selection of E is crucial in federated learning with Non-IID data

to balance the trade-off between local training efficiency and global model general-

ization.

3.2.2 Network Model

The considered networks adopt a universal frequency reuse scheme for a set of orthog-

onal channels such that each user n occupies one Resource Block (RB). Following

this approach and having the number of RB greater than or equal to the number of

devices in each cell would allow the users to send their data simultaneously without

interfering with each other. However, interference is generated from devices occupying

the same RB at different ASs. To simplify the analysis, we assume perfect downlink

communication. In addition, we adopted constant power transmission P for all users

in U . We assume that the noise inherent in the AS, denoted by N0, follows a Gaussian

distribution with variance σ2. The system model is adaptable to both terrestrial and

non-terrestrial network environments, with specific characteristics and considerations

for each scenario detailed in the subsequent sections.
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Figure 3.1: System model showing a terrestrial BS implementing dynamic SINR-
based aggregations with four levels.

Figure 3.2: A dynamic SINR-based aggregation implemented on a UAV with three
levels
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Terrestrial Network Model

In the terrestrial network model, small-scale fading effects are represented using a

Rayleigh distribution for the channel coefficient, denoted by h0. The large-scale path

loss is modeled using a power-law relationship where the signal strength diminishes

proportionally to r−η with increasing propagation distance r. The path-loss exponent,

η, characterizes the signal attenuation rate in the terrestrial environment.

Aerial Network Model

We employ the estimated probability of Line of Sight (LOS) as detailed in [44] to

model the impact of obstruction in the surroundings.. This probability characterizes

the likelihood of establishing a direct line of sight between user n and its associated

UAV and is expressed as follows:

PNLOS(rn) =
1

1 + a exp
(
−b
[
180
π

arctan
(

hU

rn

)
− a
]) , (3.3)

in this context, the environmental parameters a and b are constants, and their values

are specified in [44]. The variable hU denotes the height of the UAV and rn repre-

sents the horizontal distance between user n and the center ground of the UAV. The

likelihood of a Non-Line of Sight (NLOS) scenario is expressed as PN(rn) = 1−PL(rn).

Additionally, for NLOS and NLOS conditions, the fading characteristics are mod-

eled using the Nakagami-m distribution, where the power gains are represented as

independent and identically distributed (IID) gamma variables with shape parame-

ters mL and mN, respectively. Path loss in the aerial environment is also modeled

using a distance-dependent power-law relationship with distinct path loss exponents
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χL and χN for NLOS and NLOS conditions, respectively.

We assume that both UAVs and devices utilize directional antennas to enhance

the desired signal and reduce interference. The antenna patterns are simplified using

a discretized sectored gain model [45]. We denote the main lobe and side lobe by GuM

and Gum, respectively, for the UAV. Following the same notation, the main and side

lobes for the user’s devices are GnM and Gnm respectively. Additionally, we assume

that the link between the UAV and its associated user’s device is perfectly aligned

with G0 = GuMGnM . However, the interfering links have uniformly distributed beam

directions with gains G and probability P(G) as shown below:

Table 3.1: Beam Gain with Gain Probabilities

0 1 2 3
Gi GuMGnM GuMGnm GumGnM GumGnm

P ( θu
2π
)( θd

2π
) ( θu

2π
)(1− θd

2π
) (1− θu

2π
)( θd

2π
) (1− θu

2π
)(1− θd

2π
)

3.2.3 Trustworthiness Model

The users are ranked with a TM score obtained from their profiles, type of devices,

and participation history in prior FL processes. The TM score follows the dual-faceted

approach that encompasses two key factors:

• Quality: This metric provides insights into the data quality as well as the

computing capabilities and accuracy of the devices.

• Security: This metric provides insights into the user’s authenticity and security

profile (e.g., security software and updates).

The synthesis of the quality and security metrics leads to a unified measure referred to

as the users’ trustworthiness metric [46] [47]. This comprehensive metric provides an
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assessment of users that is crucial for the FL model integrity. To account for random

user profiles in large-scale networks, the TM score Ωn ∼ Beta(α, β) is modeled using

the beta distribution with parameters α and β. The choice of the beta distribution is

driven by its adaptability and flexibility as a continuous distribution that varies from

0 to 1, allowing for nuanced representation and adaptation to the dynamic nature of

the TM score.

Users that have Ωn ≥ ρ are categorized as fully trusted users UF ⊂ U , where ρ is

a high threshold that distinguishes reliable devices with up-to-date security patches.

On the contrary, users with a TM score of Ωn ≤ κ are considered malicious users

UM ⊂ U , where κ is a low threshold that distinguishes faulty devices and adversary

users. Users with a TM score of κ < Ωn < ρ are risky users UR ⊂ U that are reporting

the following manipulated weights:

w′
n,t = wn,t ∗

(
1 +

(1− Ωn)

10

)
, (3.4)

which can be due to low-quality data, imprecise computation at the device, or a sort

of covert (i.e., hard to detect) model poisoning attack [48]. These users hold valuable

data from which the model would benefit if used properly. In all cases, we assume that

the magnitude of the model deviation is inversely proportional to the TM score of the

user Ωn. This modeling approach enables us to incorporate the impact of users with

varying TM scores, effectively capturing the impact of risky users. By employing this

equation, we simulate the manipulative actions of risky users and account for model

imperfections from users with moderate TM scores.

It is worth noting that each user in U falls in only of the trustworthiness categories

such that UF ∪UR∪ UM = U and UF ∩UR∩ UM = ϕ. While UF are fully trusted, they
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do not possess sufficient data for FL training. Hence, we propose utilizing the set of

users UR in the initial training stages. Then, UF will be restricted from fine-tuning

the model during the later stages of the learning process.

3.3 Aggregation Algorithm

3.3.1 Success Uploading Model

To expedite the convergence speed of FL, the model selectively prioritizes high data

rate users during the initial rounds while temporarily excluding others. As the train-

ing progresses, the system gradually incorporates an increasing number of users with

lower data rates to ensure broader participation over time. Adhering to this approach,

users with high data rates play a pivotal role in rapidly constructing a robust model,

significantly reducing the overall training time. Therefore, the transmission rate in

the tth round is determined as log(1 + µt), where the transmission of the nth user

is deemed successful only if SINR(t)
c > µt. A visual representation of this dynamic

SINR training process is depicted in Fig.3.1. To mitigate the bias resulting from the

approach above, we need to amplify the users with low SINR (i.e., located far from

the AS) by multiplying by a location-dependent weighted factor that is given by the

following lemmas:

Lemma 1. The location-dependent weighted factor Sn,t(µt, rn) for a randomly selected

user n in a terrestrial wireless environment is given by,

Sn,t(µt, rn) = P(SINR(t)
n > µt) = L

(
µt

Pr−η
n

)
exp

(
−µtN0

Pr−η
n

)
, (3.5)
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Proof. see Appendix A section .1.

Lemma 2. The location-dependent weighted factor Sn,t(µt, rn) for a randomly selected

user n in an aerial wireless environment is given by,

Sn,t(µt, rn) = P(SINR(t)
n > µt) =

mL∑
n=1

(−1)n+1

(
mL

n

)
exp (−N0ζL)LL (ζL)LN (ζL)PL(rn)

+

mN∑
n=1

(−1)n+1

(
mL

n

)
exp (−N0ζN)LL (ζN)LN (ζN)PN(rn).

(3.6)

where ζn = gn(d2n+h2)χn/2µt

PG0

Proof. see Appendix A section .2.

As a result, as shown in Lemmas [1 and 2], for a randomly selected user, the

model will be weighted by the factor 1
Sn,t(µt,rn)

. The weighting factor consists of

the probability that the device’s SINR exceeds the threshold µt. It operates as an

amplification mechanism to the contribution of each user to the global model, such

that devices with lower success probability have higher contributions. Here L(s)

represents the Laplace transform (LT) of the interference in the uplink, which can be

obtained via systematic stochastic geometry analysis as [29]:

For the terrestrial environment:

L(s) = exp

{
−2πλ

∫ ∞

0

(
(1− exp (−πλr2))

1 + rη

sP

)
rdr

}
. (3.7)
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For the aerial environment:

Lx(s) = exp

{
−2πλ

4∑
q=1

Pq

∫ ∞

0

(1− exp{−πλz2})(
1−

(
1 +

sPGq(z
2 + h2)−χx/2

mx

)−mx
)
z dz

}
.

(3.8)

3.3.2 Dynamic SINR Thresholds and Trustworthiness Integration: Algo-

rithm Details

Algorithm 1 outlines the enhanced dynamic SINR approach with an incorporation of

trustworthiness considerations. It is often assumed that a limited dataset is available,

typically derived from publicly accessible datasets or provided by the service provider.

This practice aims to ensure similarity in data distribution to the private data held

by users, as demonstrated in prior works such as [1,37,38]. In the initial rounds, the

system accommodates the set of users U ′ that contains fully trusted and risky users

UF ∪ UR. This inclusion of users is particularly effective in the context of non-IID

datasets, where diverse devices with distinct datasets contribute positively to system

enhancement. Upon receiving the local weights by the AS, the algorithm proceeds by

categorizing these users into a newly subset denoted as U”. This subset only contains

users who have met the SINR requirements.



3.3. AGGREGATION ALGORITHM 38

Algorithm 1: Risk-Aware Accelerated Wireless Federated Learning
Data: µt,w0, E, T, γ, µ

Result: gt

Initialization;

g0 ← initial value depends on the learning task;

Q← array of size T ;

U ′ ← UF ∪ UR;

for t← 0 to T − 1

do

Broadcast µt for all clients;

for n in U ′ In Parallel

do

w
(0)
n,t ← gt

for i← 1 to E do

w
(i)
n,t ← w

(i−1)
n,t − γgn(w

(i−1)
n,t )

end

w′
n,t ← w

(E)
n,t ·

(
1 + (1−Ωn)

10

)
;

transmit wn,t if SINR
(t)
n > µt

then

Add user n to U ′′;

end

n← n+ 1

end

gt+1 ← gt +
1
U ′′
∑U ′′

n=1
1

Sn,t
(w′

n,t − gt)

Q[t]← evaluate the accuracy at (gt+1);

transmit gt+1 to all users ;

if Q[t] is smaller than the µ preceding elements then

U ′ ← UF ;

end

end

return Result;
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To achieve robust and reliable model aggregation in federated learning, it is crucial

to consider both the quality of wireless communication and the trustworthiness of

participating devices. The following equation embodies this principle by incorporating

both wireless and trust-related factors into the aggregation process:

gt+1 ← gt +
1

U ′′

U ′′∑
n=1

1{SINR(t)
n > µt}

Sn,t(µt, rn)
(w′

n,t − gt), (3.9)

where 1{·} is the indicator function which takes the value 1 when {·} is true and

zero otherwise. As the communication rounds progress, the updating formula (3.9),

which accounts for the cumulative contributions of eligible users, leads to an accumu-

lation of noise arising from the assumptions in the adversary model. This cumulative

effect reaches a critical point, detrimentally impacting the overall model. At this

point, including UR no longer contributes positively to the system; on the contrary, it

degrades the performance. Consequently, the system dynamically transitions to ex-

clusively considering UF to optimize and fine-tune overall performance. The dynamic

transition can be achieved by utilizing a trust window µ. The system only considers

authenticated users if the global accuracy evaluated at the AS decreases within the

trusted window µ. It is worth noting that this aggregation function simplifies to Fe-

dAvg when all users are in close proximity to the base station and are fully trusted.

Under these conditions, the standard FedAvg algorithm can be employed without any

additional modifications. The convergence analysis of FedAvg over wireless networks

is detailed in [31]. Building on this foundation, our proposed algorithm incorporates

a trustworthiness metric to enhance the performance and robustness of federated

learning in more complex and adversarial environments. By introducing this metric,
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we dynamically adjust the participation of users based on their trust scores. This

adjustment is particularly crucial when dealing with non-IID data distributions and

potential adversarial attacks.

3.4 Numerical Results

We consider the density of the AS and the UAV λ to be 50/km2, and the simulation

area is 3000 x 3000 km2. Each AS has 30 RBs; hence, it can serve up to 30 devices,

each transmitting at the same power P of 10 dBm. . Regarding the ML model,

we use a 2-layer convolutional neural network followed by two fully connected layers

while having the optimizer set to be a momentum stochastic gradient descent (SGD)

with one epoch, a momentum of 0.5, and a learning rate γ of 0.01. We trained the

model on the MINSIT digits classification dataset [49].

3.4.1 Terrestrial Network

The path loss exponent η is set to 4 for the urban environment. Concerning the

modeling parameter of trustworthiness, the coefficients α and β are picked differently

to achieve different trustworthiness means. For a trustworthiness mean of 0.95, we

used 11 and 1, respectively. For a trustworthiness mean of 0.85, we used 5 and 1,

respectively. Finally, for a trustworthiness mean of 0.75, we used 3 and 1, respectively.

We set ρ and κ to be 0.9 and 0.3, respectively. The dynamic threshold associated

with the SINR is established from 10 dB to 0 dB with a 0.25 step size.
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3.4.2 Aerial Network

The UAV is positioned at an elevation h of 45 m. The path loss exponent for NLOS

χL is set at 2.5, while NLOS χN is configured to 4. Furthermore, the main lobe

beamwidth (θ) for both the UAV and users’ devices is designated as 40◦. In addition,

a main gain lobe of 3.162 is assumed for both the UAV and the devices, accompanied

by a side gain lobe of 1. We chose the parameters of the trustworthiness metric to get

a mean of ν = 70 and ν = 83. To achieve this, we use α = 5, β = 1 and α = 5, β = 2,

respectively. We set κ and ρ to be 0.9 and 0.3, respectively. The dynamic threshold

associated with the SINR ranges from 10 dB to 1 dB with a step size of 0.25.

We discern the following three distinct cases for comparison for the numerical

results.

• Conservative: only fully trusted users UF are considered.

• Risk-Agnostic: all users in UF and UR are considered untill the end of the

simulation.

• Risk-Aware: all users in UF and UR are considered until global accuracy starts

degrading and then switching to UF only for fine-tuning.
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Figure 3.3: Accuracy over communication rounds for mean 0.95
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Figure 3.4: Accuracy over communication rounds for mean 0.85
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Figure 3.5: Accuracy over communication rounds for mean 0.75
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Figure 3.6: Accuracy over communication rounds for mean 0.90
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Figure 3.7: Accuracy over communication rounds for mean 0.80

From the numerical results, several insights emerge. First, adopting a conservative

approach is insufficient regarding the convergence rate and the maximum accuracy

achieved. This effect is more noticeable in networks with lower trustworthiness, as

shown in Figs. 3.3, 3.4, 3.5, 3.6 and 3.7. Second, there is a specific point that further

consideration of risky users UR will negatively affect the overall system due to the

cumulative added noise for each user. Third, the risk-aware approach, which involves

fully trusted and risky users in the early rounds and fine-tuning the model using only

the authenticated users, results in the highest accuracy and a high convergence rate.

The gap between the two approaches widens as the trustworthiness mean gets lower.

Another crucial observation lies in the paradoxical outcome that, despite neglecting a

portion of the users, there is an increased accuracy. Remarkably, the model does not

exhibit bias towards the retained users. This intriguing phenomenon is attributed to
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the fact that, when certain users are removed from the training process, the remaining

users may still possess data corresponding to the same classes as those omitted.

This intricacy ensures that removing specific users does not compromise the model’s

accuracy. Moreover, the amount of data required to fine-tune an existing model is

less than the required to construct it.



46

Chapter 4

RARE-FL: Resilient Accelerated and Risk-Aware

Edge Federated Learning in Scarce Data Scenario

4.1 Contribution

Current FL schemes are inadequate for scenarios with scarce data and/or stealthy

edge devices where a validation dataset is absent. This letter covers such a gap by

proposing a resilient, accelerated, and risk-aware edge FL (RARE-FL) that utilizes

Trustworthiness Metric (TM) scores to provide fast and trustworthy Federated Learn-

ing as a Service (FLaaS) without relying on a validation dataset. Inspired by transfer

learning, we formulate a novel RARE-FL aggregation function that progressively re-

duces the influence of edge devices in the learning process in which the magnitude

of the reduction is determined by the device TM score compared to the average TM

scores across the network. The proposed RARE-FL follows the descending Signal-to-

Interference-Plus-Noise-Ratio (SINR) inclusion of edge devices with a per-device de-

caying function to ensure accelerated convergence with fair contribution from devices.

The numerical results in a 6G non-terrestrial network underscore higher accuracy and

faster convergence of the proposed RARE-FL compared to state-of-the-art models.
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For both FLaaS and network model, we adopt the same models in sections 3.2.1, 3.2.2

and 3.2.3.

4.2 RARE-FL ALGORITHM

This section details the FL model in (3.1) for the proposed RARE-FL scheme, where

we define the per-device weighting factor an and utilize the following aggregation

function:

gt+1 = gt +
K∑

n=1

pnξn︸︷︷︸
an

Wn,t × (w′
n,t(Ωn)− gt), (4.1)

where pn = Dn/D, Dn is the amount of data possessed at device x, D =
∑K

n=1Dn

is the total amount of available data, w′
n,t(Ωn) is the reported local model given by

(3.4), wn,t is a wireless communication factor and ξn is a trustworthy factor detailed

in the sequel.

4.2.1 Wireless Communications Factor

The aggregation function (4.1) is performed at the UAV, and the local model update

( i.e., in (3.2) and (3.4)) is performed at the edge device. Hence, at each iteration

t, each device must transmit its own local update to the UAV for aggregation. A

descending transmission rate is employed in the learning phases to accelerate the FL

convergence. That is, at the tth round, the local model is transmitted at a rate of:

Rt = B log2(1 + µt), (4.2)

such that µ0 > µ1 > · · · > µT−1. Due to path loss and fading, the uplink transmission

of the local model is successfully received at the UAV with probability P{SINR(z)
x,t >
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µt}, where the instantaneous (i.e., at the tth round) uplink SINR is expressed as:

SINR
(z)
x,t =

PG0Hz,t

(√
h2 + r2n

)−χz

IL + IN +N0

, (4.3)

where z ∈ {N,L} indicates a LOS or NLOS transmission, χz is the path loss exponent,

P is the uplink transmission power, Hz,t is the instantaneous fading power gain, N0 is

the background noise, ILt and INt are the instantaneous interference originating from

LOS and NLOS communication.

Starting with high transmission rates shortens the duration of initial rounds at the

cost of limiting the aggregation to high SINR devices. Proceeding with the learning

phases, the transmission rate requirements are relaxed, and more devices are included

in the learning process to fine-tune the FL model. To ensure fair contribution from

all devices, the wireless communication factor in (4.1) is expressed as:

Wn,t =
1(SINRx,t > µt)

P{SINRn,t > µt}
, (4.4)

where the numerator ensures the inclusion of only successfully transmitted models,

and the denominator amplifies the contribution of devices with lower transmission

success probability. Following well-celebrated stochastic geometry analysis for up-

link UAV networks [50], the distance-dependent average success probability can be
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obtained as:

P{SINRn,t > µt} =
zN∑
k=1

(−1)k+1

(
zN
k

)
exp (−N0ζN)LL (ζN)LN (ζN)PN(rn)

+

zL∑
k=1

(−1)k+1

(
zL
k

)
exp (−N0ζL)LL (ζL)LN (ζL)PL(ri), (4.5)

where LL(·) and LN(·) are the Laplace transforms (LT) of the probability density

functions of the LOS and NLOS interfering links, respectively, and ζz =
gz(r2n+h2)χz/2µt

PG0

for z ∈ {N,L}. Following the stochastic geometry analysis for Nakagami-m fading

environments [29], the LTs in (4.5) can be expressed as:

Lz(s) = exp

{
−2πλ

3∑
q=0

Pq

∫ ∞

0

(1− exp{−πλq2})(
1−

[
1 +

sPGq(q
2 + h2)−χz/2

mz

]−mz
)
q dq

}
.

(4.6)

4.2.2 Trustworthy Factor

The factor Wn,t is meant to reduce the impact of the wireless communication impair-

ments, to ensure accelerated and unbiased FL model aggregation. To further account

for the TM scores, we implement the following trustworthy factor:

ξn = 1(Ωn > κ) exp{−(1− Ωn)(1− ν)P{SINRn,t > µt}t}, (4.7)

where κ is the minimum acceptable TM score and ν =
∑k

n=1
Ωn

K
is the average TM

score across the contributing edge devices.

The trustworthy factor in (4.7) is inspired by the concept of transfer-learning for

scarce data scenarios [51, 52]. The inspiration stems from the utilization of transfer



4.2. RARE-FL ALGORITHM 50

learning to pre-trained models (i.e., on close but not similar scenarios) that are then

fine-tuned by the scarce data of the intended scenario. Such knowledge transfer has

been shown to outperform overfitted models solely trained via the scarce data of the

intended scenario. We can project the same criterion to our use case by considering

that transfer learning is initialized with distorted data (i.e., the data of the pre-trained

model) and is fine-tuned by accurate data (i.e., data of the intended scenario). On

the same line of thought, devices with lower TM scores are included at initial training

rounds to accelerate convergence and avoid overfitting while devices with higher TM

scores are used for fine-tuning. Based on the TM score, the exponentially decaying

factor exp{1− (1−Ωn)(1− ν)P{SINRn,t > µt}t} is crafted to gradually diminish the

influence of distorted models in a proportion that is relative to their TM score, which

reflects the magnitude of model distortion. Such progressive elimination exploits all

the available data while keeping devices with higher TM scores (i.e., more accurate

data) for more iterations that fine-tune the model and improve the overall accuracy.

Nevertheless, (4.7) utilizes the indicator function 1(Ωn > κ) to completely exclude

devices with intolerably low TM scores (i.e., highly distorted local models) from the

aggregation function to avoid steep FL accuracy divination.

Unlike transfer learning, the proposed RARE-FL has no hard boundary between

the pre-training and fine-tuning phases. In contrast, the RARE-FL presents a per-

device soft transition between the pre-training and fine-tuning phases via the trust-

worthy factor in (4.7). In particular, the four components that determine the per-

iteration contribution of each device in the FLaaS transaction are detailed below

1. Per-device TM Factor: The per-device factor (1− Ωx) reflects the reported

local model’s distortion magnitude. Hence, devices with lower TM scores are



4.2. RARE-FL ALGORITHM 51

eliminated faster to ensure that devices with more accurate local models have

greater influence on the fine-tuned FL model. Note that fully trusted Ωx = 1

devices are never eliminated from (4.7).

2. Universal TM Factor: A lower ν implies, on average, more distorted lo-

cal models among the edge devices. Hence, the universal factor (1-ν) ensures

a faster transition from pre-training to fine-tuning for scenarios with higher

distortions in local models (i.e., lower ν), and vice versa.

3. Per-device Participation Factor: The factor (P{SINRn,t > µt}×t) accounts

for the distant-dependent probability of success for the local model transmis-

sions. Hence, accounting for the successful participation of each device in the

global rounds rather than the absolute iteration index.

4. The Indicator Function The factor 1(Ωx > ρ) excludes devices with highly

distorted local models to avoid steep accuracy divination.

1. Per-device TM Factor: The per-device factor (1−Ωn) reflects the magnitude

of distortion of the reported model. Hence, devices with lower TM scores are

eliminated faster to ensure that devices with more accurate local models have

greater influence on the fine-tuned FL model. Note that fully trusted Ωn = 1

devices are never eliminated from (4.7).

2. Universal TM Factor: A lower ν implies, on average, more distorted lo-

cal models among the edge devices. Hence, the universal factor (1-ν) ensures

a faster transition from pre-training to fine-tuning for scenarios with higher

distortions in local models (i.e., lower ν), and vice versa.



4.2. RARE-FL ALGORITHM 52

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Average Successful Participation

y

Ωn = 0.8, ν = 0.75
Ωn = 0.7, ν = 0.75
Ωn = 0.8, ν = 0.8

Figure 4.1: Illustration of decaying function’s behavior for different values of ν and
Ωn.

3. Per-device Participation Factor: The factor (P{SINRn,t > µt}×t) accounts

for the distant-dependent probability of success for the local model transmis-

sions. Hence, accounting for the successful participation of each device in the

global rounds rather than the absolute iteration index.

4. The Indicator Function The factor 1(Ωn > κ) excludes devices with highly

distorted local models to avoid steep accuracy divination.

A pictorial illustration for the trustworthy factor in (4.7) is shown in Fig. 4.1 for

different values of Ωn and ν. The figure shows the diminishing contribution of the

devices as a function of successful contribution in the model aggregation. As shown

in the figure, the trustworthy factor in (4.7) enforces faster decay for devices with

lower Ωn and/or for scenarios with lower ν to ensure sufficient rounds of fine-tuning
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with accurate data.

4.2.3 The RARE-FL Algorithm

The RARE-FL algorithm, as detailed in Algorithm 1, orchestrates dynamic and ro-

bust FLaaS transactions. The algorithm starts with an initial global model g0 sent

from a UAV to all K devices to commence local training using (3.2). Then, devices

transmit their local models back to the UAV, as in (3.4). At the UAV, devices are in-

cluded in the aggregation to update the global model according to the weights defined

in (4.1). Hence, mitigating potential deviation due to wireless channel impairments

and local model distortions guarantees resilient, trustworthy, and accurate FLaaS

transactions.

It is worth mentioning that, by virtue of the aggregation function in (4.1) with

the trustworthy factor defined in (4.7), Algorithm 2 is self-sufficient. Different from

the trustworthy FL in chapter 3 the UAV for the proposed RARE-FL does not need

to possess a validation dataset to either validate the reported local models or to track

the convergence of the global model.
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Algorithm 2: Aerial Wireless Federated Safeguard

Data: T, µt, E, γn,Ωn

Result: gt

Initialization t← 0;

g0 ← Initial Model;

while t < T do

Broadcast µt for all clients;

n← 0 ;

while n ≤ K − 1 for each client

do

w
(0)
n,t ← gt;

e← 0;

while e ≤ E − 1 do

w
(e+1)
n,t ← w

(e)
n,t − γn∇Fn(w

(e)
n,t);

e← e+ 1

end

w′
n,t ← w

(E)
n,t ·

(
1 + (1−Ωn)

10

)
;

transmit w′
n,t;

n← n+ 1;

end

At the BS:

gt+1 ← gt +
∑K

n=1 pnξnWn,t × (w′
n,t − gt);

transmit gt+1 to all users ;

t← t+ 1

end

return Result;
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Figure 4.2: Accuracy over time for mean ν = 0.85
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Figure 4.3: Loss over time for mean ν = 0.85
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Figure 4.4: Accuracy over time for mean ν = 0.7
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Figure 4.5: Loss over time for mean ν = 0.7
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Figure 4.6: Transmission time of RARE-FL vs RRE-FL

4.3 Numerical Results

The FLaaS is implemented on a non-terrestrial network in which the locations of

the UAVs are generated via a 2-D Poisson Point Process with intensity (λ) 50/km2

located at a height (h) of 45m on an area of 3000×3000 km2. The UAVs are equipped

with RBs, each allowing them to serve up to K = 30 concurrent devices. The devices

operate over B = 1 MHz channels with an uplink transmission power of 10 dBm.

The path loss exponent for signal propagation is set to be χN = 4 for NLoS and

χL = 2.5 for LoS links. The transmission of both UAVs and devices is characterized by

a main lobe beamwidth (θ) of 40 degrees with a main lobe gain of 5 dBi and a side lobe

gain of 0 dBi. For accelerated FLaaS, a descending SINR threshold τt is employed from

5 dB to 1 dB with a step size of -0.1 dB. For the trustworthiness landscape, we consider
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Kt fully trusted devices (i.e., with unity TM score) andKr = K−Kt risky devices with

TM scores randomly drawn from a beta distribution with shape and scale parameters

α and β. Two scenarios with different levels of scarcity of trustworthy devices are

considered. Trustworthiness mean ν = 0.85 by setting Kt = Kr = 15, α = 10 and

β = 2 and trustworthiness mean ν = 0.7 by setting Kt = 10, Kr = 20, α = 10 and

β = 3.75. We also introduce a threshold κ = 0.3 to detect and eliminate devices with

intolerable local deviations. Our learning architecture leverages the MNIST dataset

[49], a standard benchmark in machine learning, to train a Convolutional Neural

Network (CNN). The training consists of one epoch per round for each participant

with the a local model size of 90 kB. We benchmark the proposed RARE-FL against

the following approaches:

• Risk-Agnostic FL: an aggressive strategy employing an aggregation function

oblivious to the TM scores by setting κx = 1. Hence, equally combining accurate

and inaccurate local models.

• Conservative FL: a strategy employing a binary inclusion/exclusion rule to

consider only fully trusted devices in the aggregation function by setting κx =

1{γx = 1}. Hence, completely avoiding inaccurate local models.

• Validation-dataset (VD) dependent FL: a strategy introduced in chapter 3

that utilizes a validation dataset to track of the global model convergence and

exclude risky devices upon model accuracy degradation.

• Two variants of RARE-FL:

1. Unified RARE-FL: This strategy eliminates the per-device success prob-

ability from (4.7) and utilizes the following trustworthy factor κx = 1(γx >



4.3. NUMERICAL RESULTS 59

ρ) exp{−(1−γx)(1−µ)t} that is a function of the absolute iteration index

t. Hence, it emphasizes the importance of fair device participation across

the global rounds.

2. RRE-FL: This is a resilient risk-aware edge (RRE) FL that operates at

the minimum SINR-level allowing cell-edge devices to participate in all

global rounds. Hence, explicitly emphasising the impact of the descending

SINR allocation for accelerated convergence.

Figs. 4.2, 4.3, 4.4 and 4.5 demonstrate how RARE-FL and its variants outperform

the conservative and risk-agnostic schemes. On one hand, the conservative scheme

achieves low accuracy and high loss due to the scarcity of data. On the other hand,

the risk-agnostic scheme shows good initial accuracy and loss followed by a steep

degradation in both due to distorted local models’ accumulated effect. By virtue

of the proposed aggregation function in (4.7), the proposed RARE-FL benefits from

all available data to avoid overfitting while keeping only accurate models for fine-

tuning to achieve high accuracy and low loss. The VD-dependent scheme shows

slightly higher accuracy and lower loss than the proposed RARE-FL, which is no

surprise given the assumption of the available validation dataset at the UAV. A

validation dataset enables continuous monitoring of the global model accuracy and

optimal switching between initial training and fine-tuning phases. Nonetheless, the

availability of the validation dataset can be questionable in many scenarios. when

comparing Figs. 4.2 and 4.4, it is clear that the accuracy gain of RARE-FL is higher

as the scarcity of trustworthy data increases (i.e., lower ν).

We compare the RARE-FL to its variants in Figs. 4.2, 4.3, 4.4 and 4.5 to justify
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its composition. The RRE-FL shows slower convergence when compared to RARE-

FL, which quantifies the impact of the dynamic SINR allocations. Interestingly, the

RRE-FL also shows lower final accuracy and higher final loss, which can be attributed

to the larger number of risky devices involved per global round. The Unified RARE-

FL shows slightly lower accuracy and higher loss than the RARE-FL becuase farther

devices contribute less to the overall learning. Due to the dynamic SINR allocation,

farther devices are included at later iterations (i.e., high t) of the RRE-FL, which

entails a lower contribution to the aggregation due to the exponentially decaying

trustworthy factor κt in the iteration round t.

Fig. 4.6 further emphasises the impact of descending SINR allocation on the FL

convergence speed. In particular, the figure shows the time required to transmit the

local model at rate B log2(1 + τt) in the uplink to the UAV. For the RARE-FL, the

descending τ0 < τ1 < · · · < τt < · · · < τT−1 implies shorter transmission times for the

initial rounds as shown in the blue staircase curve of Fig. 4.6. On the other hand, the

RRE-FL utilizes the minimum τT−1 for all rounds for inclusive devices contribution

across all aggregation rounds, which shows a constant transmission time in Fig. 4.6.

By virtue of the dynamic transmission time for the local models, the RARE-FL shows

the faster convergence, high accuracy and lower loss as reported in Figs. 4.2, 4.3, 4.4

and 4.5.
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Chapter 5

Conclusions

5.1 Summary and Conclusion

This thesis investigates methods for enhancing the robustness of Federated Learning

as a Service (FLaaS), specifically tackling the challenges arising from client hetero-

geneity in terms of communication quality and trustworthiness. The research focuses

on two key areas that build upon each other to create a comprehensive solution.

1. Risk-Aware Accelerated Wireless Federated Learning with Heteroge-

neous Users (Chapter 3): in this chapter, we explored the domain of FLaaS,

a widely recognized distributed machine learning paradigm, we conducted a

thorough analysis uncovering the inherent heterogeneity among clients. This

heterogeneity manifested in variations related to security, computational re-

sources, and closeness to the base station. To address the challenges posed by

this diversity, we developed a dynamic system that strategically operates at a

high data rate during the initial stages of communication rounds, thereby effec-

tively speeding up the learning process. As the learning advances, the system

adjusts its parameters, aiming to seamlessly accommodate a broader user base.
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Our experimental findings underscored the significance of a well defined pro-

posed approach to being risk-aware. Contrary to the conservative approach of

disregarding users with moderate trust scores, we discovered that such exclu-

sion did not necessarily yield enhancements to the system. Likewise, adopting

a Risk-Agnostic approach, which involves incorporating all fully trusted and

risky, users results in significant model degradation in the long run. The pivotal

contribution of our work lies in introducing a new algorithm that considers the

combined impact of trustworthiness and wireless network impairments. This in-

novative algorithm combines elements from both conservative and Risk-Agnostic

approaches, demonstrating a substantial enhancement in various network trust

environments.

2. Resilient Accelerated & Risk-Aware Edge Federated Learning (RARE-

FL) in Scarce Data Scenario (Chapter 4): Building upon the foundations

laid in Chapter 3, this chapter introduces a resilient, accelerated, risk-aware edge

FL (RARE-FL). In the FLaaS ecosystem, edge devices are assigned a trustwor-

thy metric (TM). We proposed a novel aggregation function that scales the

contributions of edge devices according to their data amount, wireless channel

quality, and TM score. The wireless channel quality factor is designed to reduce

the impact of wireless communication impairments, ensuring an accelerated and

unbiased global model. Inspired by transfer learning, the trustworthy factor is

crafted to diminish the contribution of the devices to the global learning phases

in proportion to their TM scores. Hence, all data for initial training should be

exploited to accelerate convergence and avoid overfitting while fine-tuning with

trustworthy data to improve the overall FL accuracy. The proposed RARE-FL
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is validated using the MNIST dataset over a 6G wireless network where un-

manned aerial vehicles (UAV) provide FLaaS to terrestrial edge devices. The

numerical results demonstrate the superior performance of the proposed RARE-

FL compared to conventional risk-agnostic and conservative FL schemes. The

RARE-FL shows more significant performance gain in scenarios with a higher

scarcity and lower loss of trustworthy devices.

5.2 Recommendations and Future Work

This thesis has laid the foundation for secure and reliable FLaaS through the devel-

opment of novel TM systems and attack mitigation techniques. Building upon this

work, several avenues for future research and development emerge.

5.2.1 Dynamic Trustworthiness Metric Updates

A crucial aspect for future exploration is the development of mechanisms to update

device TM scores dynamically. This would enable the system to adapt to evolving

user behavior and contribution patterns. Potential approaches include:

1. Contribution-Based Updates: Similar to the approach in [53], TM scores

could be adjusted based on the measured contribution of each user during the

learning process. This would incentivize positive participation and allow users

to improve their reputation over time.

2. Performance-Based Updates: TM scores could be linked to the performance

of the models trained using the data provided by each user. Devices consistently

contributing to accurate and robust models would see their TM scores increase,

reflecting their trustworthiness.
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5.2.2 Enhancing FLaaS Architecture Resilience

Further research is needed to enhance the resilience and robustness of the FLaaS

architecture against a broader range of potential threats. This could involve im-

plementing Multi-layered Defense Strategies, a tiered defense system with multiple

protection levels could provide comprehensive security. The first layer could employ

statistical methods, as discussed in Section 2.3.2, part 2, to detect and filter out

significant deviations caused by malicious users. Subsequent layers could utilize the

TM-based approaches developed in Chapters 3 and 4 to identify and mitigate more

subtle attacks from imperfect or stealthy users.

5.2.3 Transfer Learning with Dynamic Transition

Chapter 4 introduced a dynamic transition approach within the FLaaS framework.

Initially, the system leverages data from all available users to expedite the training

process. As the learning progresses and trust is established, the system transitions

to exclusively utilizing data from trusted users for fine-tuning the model, ensuring

greater security and reliability.

This concept of dynamic transition holds significant potential beyond the specific

application presented in this thesis. It can be extended to various domains within

Transfer Learning (TL) where data are scarce for the target task. Instead of relying

on a binary decision of either including or excluding data from a source domain, a

more nuanced approach can be adopted.
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Appendix

Proofs

This appendix details the proof of lemmas 1 and 2

.1 Lemma 1 Proof

Lemma 1 can be proved as follows:

1
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)
where (a) is achieved by the cumulative distribution function (CDF) of the exponential

distribution of the fading and (b) is obtained by substituting the expectation on the

aggregated interference. Note that L (s) is the Laplace transform of the probability
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density function (PDF) of the aggregated interference.

.2 Lemma 2 Proof

Lemma 2 can be proved as follows:

The success probability for a LoS client is given by

(Si,t(µt, ri)|i = L) = P(SINR(t)
i > µt)
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since h2
0 follows a gamma distribution, using Alzer’s inequality in [54] gives us an

approximate of

≈
mL∑
n=1

(−1)n+1

(
mL

n

)
·

EIagg

[
exp

(
−SLnµt (N0 + IL + IN)

PG0(r2i + h2)−χL/2

)]
,

where SL = mL(mL!)
−1
mL

=

mL∑
n=1

(
(−1)n+1

(
mL

n

)
exp

(
−µtN0SLn(r

2
i + h2)χL/2

PG0

)
·

LL

(
SLn(r

2
i + h2)χL/2µt

PG0

)
· LN(

SLn(r
2
i + h2)χL/2µt

PG0

))
.

Following the same steps for a NLOS client, we replace mL with mN and SL with SN
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have
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Now, considering the law of total probability,
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which proves Lemma (2).
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