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Abstract—Remote assessment of stress is a critical component of
IoT telehealth services. However, despite extensive research into
stress detection, there remains a crucial gap in establishing a
standardized stress scale, particularly using remote, noninvasive
methods. We present a framework for remote stress assessment
using video-based physiological monitoring. The proposed sys-
tem architecture includes video acquisition using RGB cameras,
sampling, preprocessing to remedy motion and lighting artifacts,
and physiological inference by independent component analysis to
extract stress-related biomarkers including remote photoplethys-
mography (rPPG) and respiratory biomarkers. The framework
aims to provide a standardized scale for acute stress assess-
ment, offering a better understanding of stress levels in remote
interactions, including therapy sessions, with future research
directions for integrating computer-assisted psychotherapists who
can effectively communicate with patients.

I. INTRODUCTION

Stress assessment is a pressing need in progressive healthcare
systems, especially after the significant increase in stress-related
diseases such as anxiety, depression, and disability. Minor daily
stressors have long-term implications on mental health and
well-being [1]. Stress significantly exacerbates several diseases,
including cardiovascular, autoimmune diseases, asthma, and
depression, and weakens immunity against infections. Over
25% of Canadians rank their daily stress as high-to severe, and
75% of short-term disability claims in Canada are caused by
mental disorders related to stress, which costs employers about
20 billion dollars per year [2].

Stress is psychological and physical strain triggered by
physical, emotional, social, and cognitive stimuli that disrupt
the homeostasis balance of the individual, activating a stress
response to cope with the stressor. Stress can be prolonged
(chronic stress) or short-term (acute stress). Acute stress re-
sponse involves the activation of the Autonomic Nervous
System (ANS), hypothalamic-pituitary-adrenal (HPA) axis, and
immune system [3].

Common methods to measure stress responses include self-
report questionnaires or physiological measurements like Heart
Rate Variability (HRV) and electrodermal Activity (EDA) [4].
While wearables such as wristbands are commonly used for
physiological biomarker assessment, Visual Contactless Phys-
iological Monitoring (VCPM) offers a promising alternative.
VCPM is an innovative technology that utilizes videos to
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measure vital signs by analyzing the change in intensity of three
RGB colors in each pixel. It is a rapidly developing field and at
this moment, it can effectively measure photoplethysmography
signal (PPG), heart rate (HR), blood pressure (BP), respiratory
rate (RR), and oxygen saturation (SpO2) [5] which are known
biomarkers to indicate stress. Remote sensing enables mon-
itoring stress in many scenarios using everyday devices like
phones or computer cameras, without the need for specialized
equipment.

There is a critical need for establishing a standardized stress
scale in tele-health services. While many studies view stress
detection as a classification issue (i.e. low or high), few studies
explore stress level measurement. For example, Garzon-Rey et
al [6] introduced a novel method using psychometric tests and
biochemical variables, however these cannot be measured by
non-invasive techniques. Arza et al [7] proposed a scale based
on wearable sensors, but not all physiological parameters are
considered, especially remote vital signs.

II. SYSTEM ARCHITECTURE

We propose a system to measure stress on a uniform scale,
using non-invasive remote sensing methods. The overall model
is depicted in figure 1 and detailed herein.

A. Video Acquisition

Visible spectrum RGB digital cameras, covering from 380
to 700 nm frequencies, are utilized to capture live videos for
the stressed person. Webcams, digital photography cameras,
cameras in cell phones, or any smart device can be considered
an RGB imager. The images and videos from those devices
are optimized to offer better visual clarity to the human eye.
A common practice is to position a laptop or tablet’s frontal
camera approximately 1 meter away from the subject to ensure
recording breathing-related movements [8].

B. Video Sampling and Prepossessing

We adopt a sampling model of 30 frames per second (fps)
with a resolution of 640 x 480 pixels per frame to optimally
capture the intensity of vascular variations. The face is selected
as the region of interest (ROI) due to its rich vascular network,
which is sensitive to changes in blood volume and oxygenation
levels [9]. To mitigate motion artifacts, face ROIs are tracked
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Fig. 1. Framework to assess and manage stress remotely

using the KLT algorithm to adjust for subject motion. To ad-
dress lighting variations, an adaptive color difference operation
is performed between raw rPPG signals in green and red chan-
nels. An adaptive bandpass filter is then designed based on the
estimated HR frequency to remove motion and noise artifacts
while preserving HR-related frequencies to dynamically adjust
parameters based on HR estimation [10].

C. Physiological Biomarker Signals Extraction

We adopt an image processing model-based approach, inde-
pendent component analysis (ICA), to extract PPG signals. ICA
extracts PPG signals by separating cardiovascular pulse wave
signals from mixed signals obtained from RGB color sensors
on the facial region. It assumes linear mixtures of underlying
source signals and aims to find a demixing matrix to estimate
the source signals. By maximizing non-Gaussianity measures
like kurtosis, ICA identifies independent sources, including
the PPG waveform, amidst noise and artifacts, providing an
estimate of the cardiovascular pulse wave [11].

D. Stress Biomarkers and Derived Parameters

Various stress biomarkers can be derived from remote PPG
signals. The typical HR can be inferred by applying temporal
filtering to rPPG signal. Then, to derive HRV, the inter-beat
interval is computed from the filtered rPPG signal. To calculate
the detrended HRV, the HRV signal is subtracted from the HR
curve to extract the fluctuation. Finally, spectral analysis is
employed on detrended HRV to estimate the RR [12]. Studies
have shown that PPG, HRV, HR, and RR can be utilized as
reliable biomarkers for stress assessment [4].

E. Stress Scale

Once remote biomarkers are estimated, they contribute to
formulating a standard scale equation for acute stress, providing
a scale from 0 to 100. Utilizing a stress scale with a wider
range, instead of just two or three levels, enhances sensitivity to
changes in stress states in real-life scenarios, facilitating quicker
responses and more effective interactions. The user interface
app serves as a plugin interface for online meeting applications,
enabling real-time stress monitoring during virtual interactions.

III. CONCLUSIONS

The proposed framework for remote stress assessment en-
compasses an end-to-end service for tele-health users. Using
physiological biomarkers derived from video feeds, we present

a model for superimposing stress-level indicators on live-stream
videos of users. The proposed system architecture integrates
video acquisition, preprocessing, and physiological biomarkers
extraction to estimate stress levels on a standardized scale.
This framework offers a practical solution for real-time stress
monitoring in various applications, extending to remote therapy,
first-responders, and hazardous work environments. Future di-
rections may involve exploring the integration of stress monitor-
ing with computer-assisted psychotherapy for more autonomous
and effective communication with patients.
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