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Abstract—The rise of 6G technology will enable various in-
novative applications to deliver transformative experiences and
services with unprecedented speed, reliability, and interactivity.
On one hand, the realization of such innovative applications relies
on the processing of large volumes of data generated at the Ex-
treme Edge of the network, requiring time-critical and resource-
intensive processing. On the other hand, these applications require
handling multi-modal data or inputs from several sensing data
sources, and as a result, the resulting computing tasks encompass
multiple subtasks that are crucial to service delivery. Conventional
offloading schemes overlook the complexity of these applications,
jeopardizing the task success rate and application QoS. In this
work, we highlight the dire need for a computational offloading
scheme that addresses the intricate nature of such applications
and their computing tasks, and present a preliminary problem
formulation to tackle these needs.

I. INTRODUCTION

Recent technological advancements for mobile communi-
cations that go Beyond the Fifth Generation (B5G) and the
Sixth Generation (6G) signal the beginning of a new era of
innovation. Built on the foundations laid by its predecessors, 6G
promises faster data speeds, lower latencies, and greater relia-
bility to enable transformative applications and services across
various domains. From ultra-high definition video streaming
and interactive gaming to real-time remote surgery and au-
tonomous transportation systems, personalized services will
enable unprecedented levels of immersion, engagement, and
productivity [1].

The successful delivery of these innovative applications
requires handling extensive volumes of data generated at the
extreme edge of the network, some of which are time-sensitive
and require resource-intensive processing. In many cases, an
application will combine multi-sensory modalities or inputs
from several distributed data producers that contribute crucial
insights for service delivery, as shown in Fig. 1. For instance, an
Unmanned Aerial Vehicle (UAV) supplies visual, range, speed,
and acceleration data to enable a multi-modal localization
service. In other cases, applications may need preprocessing
of the distributed data streams that are inherently susceptible
to failures due to the presence of measurement noises, poten-
tial sensor malfunctioning, etc. For example, in an industrial
application intended to automate equipment operations, many
industrial machines produce massive amounts of data in sep-

Fig. 1. Examples of IoT devices that produce multi-modal data to enable
complex IoT services.

arate data flows that must be analyzed to extract potentially
valuable information.

The common characteristic among such applications is the
intricate nature of the processing required to extract meaningful
insights. Typically, the data processing task encompasses a
multitude of subtasks, where each subtask targets at a singular
data stream. This often requires the execution of multiple
subtasks in parallel to meet stringent performance and time re-
quirements [2]. Consequently, the success of these applications
is contingent not only on efficiently processing the data at the
edge to meet their real-time demands, but also on effectively
coordinating and managing the execution of numerous subtasks
to ensure seamless service provision.

Driven by the growth of these data-intensive applications
and the proliferation of IoT devices, Extreme Edge Computing
(EEC) has emerged as an efficient computing paradigm offering
the opportunity to utilize the idle computational resources of
Extreme Edge Devices (EEDs). The average EED is equipped
with modern powerful computing units and an array of wire-
less communication capabilities (e.g., Bluetooth, WiFi, etc.),
enabling real-time data exchange and processing. EEC offers
several advantages, including proximity to the data source,
reduced latency, fault tolerance, scalability, and enhanced cost-
effectiveness [3], [4].

We argue that for the subtask-wise partitioned application
pattern considered in this work, EEC is a well-fitted computing
paradigm. Unlike the conventional method of offloading a large



computing task to a single Edge Computing (EC) server, EEC
allows the separate offloading of each computational subtask to
an EED. This strategy offers several benefits: a) eases the strain
of rising demands on EC servers, b) increases the utilization
of EED resources, and most importantly, c) mitigates delays
caused by transferring distributed input data required for task
completion to a single EC server.

A myriad of literature explored computational offloading
schemes for EEC. The primary optimization objectives are
a) minimizing energy consumption (e.g., [5]), b) minimiz-
ing latency (e.g., [6]), or trade-offs between these objectives.
However, these works cannot meet the requirements of the
proliferating applications exemplified above, for which, service
requesters’ satisfaction hinges not only on fulfilling individual
subtask requirements, but also on full task execution to produce
meaningful insights. Hence, with the explosive growth of these
complex IoT applications aggravating the pressure on EC
servers, it becomes imperative to devise solutions tailored to the
intricate demands of these computing tasks. In the sequel, we
present a preliminary problem formulation that aims to address
these gaps in the literature.

II. SYSTEM MODEL AND PROPOSED SOLUTION

Consider a system with a set of service requesters and a
set of subtasks denoted by K and I, respectively. Subtasks are
members of nonoverlapping sets Bk, where each set represents
a “parent” task produced by service requester k. Let uk denote
an arbitrary amount of reward that is earned when service
requester k is satisfied with its task completion. Each subtask
i is restricted by a deadline tdeadlinei . Moreover, there exists a
set of workers J , where each worker has a maximum available
computing capacity denoted by fmax

j . Let Di,j denote the total
communication and execution delays for subtask i at worker j,
and ci,j the amount of computational capacity dedicated from
worker j to subtask i.

Our objective is to maximize the number of completed
tasks, hence satisfying the highest number of service requesters.
Consequently, we formulate the problem as a Binary Linear
Program (BLP), with two decision variables: the binary variable
xi,j denotes whether task i is assigned to worker j, and the
binary decision variable yk denotes whether task k is fully
assigned. The mathematical problem formulation is written as
follows:

maximize
xi,j , yk

∑
k∈K

ukyk

subject to

C1:
∑
i∈I

ci,jxi,j ≤ fmax
j , ∀j ∈ J ,

C2:
∑
j∈J

Di,jxi,j < tdeadlinei , ∀i ∈ I,

C3:
∑
j∈J

xi,j = yk , ∀i ∈ I,∀k|i ∈ Bk

In the above formulation, constraint C1 ensures that the
cumulative workload of subtask assignments at worker j does
not exceed its available computational capacity. Constraint C2
ensures that any subtask i is completed within its designated
deadline. Finally, constraint C3 ensures that if task k is selected
for execution, all subtasks belonging to this task (that is, batch
Bk) are assigned. In this way, we ensure that the requester is
satisfied because all the subtasks needed for the delivery of the
service are assigned. This all-or-nothing approach also extends
to the achievement of the reward uk, as it is associated with
the full execution of the task.

We anticipate that the proposed solution will outperform
conventional offloading schemes in several dimensions. Firstly,
conventional schemes fail to guarantee that all subtasks belong-
ing to a single service requester will be executed, thus failing
to ensure high task success. Hence, our proposed solution
is expected to significantly increase the task success rate,
resulting in higher service requester satisfaction. Secondly,
since our proposed scheme assigns resources exclusively to
batches of subtasks, the amount of resource waste due to
subtask assignments that do not contribute to full service
delivery will be eliminated, improving the resource utilization
rates. Finally, an often overlooked aspect in the literature
is the effects of service requesters’ contention for limited
resources. The full task completion utility can be designed
in a way that differentiates among different tasks in terms of
computational demands, hence increasing fairness levels among
service requesters. In future work, we will perform an extensive
performance evaluation of the proposed scheme to validate the
anticipated performance enhancements.
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